# The kink-band triangle: a triangular plot for paleostress analysis from kink-bands 

DEEPAK C SRIVASTAVA
Department of Earth Sciences. University of Roorkee, Roorkee-247667, India

RICHARD J. LISLE<br>Laboratory of Strain Analysis, Department of Earth Sciences, University of Wales, Cardiff, CF1 3YE, U.K.<br>MOHD. IMRAN

National Council for Cement and Building Materials. New Delhi-110049, India
and
RAJEEV KANDPAL
Department of Earth Sciences, University of Roorkee, Roorkee-247667, India
(Recened 28 October 1996; accepted in revised form 20 May 1998)


#### Abstract

A kink-band can be graphically represented as a point on an equilateral triangle whose vertices define the angles between external foliation and kink plane, between internal foliation and kink plane. and between internal- and external-foliations. Four typical deformation paths that correspond to the four modes of kink-band growth can be discerned on this triangle. The three linear relationships between each of the kink-band angles and the inclination of the $\sigma_{1}$-axis with respect to the unrotated layering can be transformed into a straight line on the triangular plot. Application of this plot in paleostress analysis is demonstrated by several examples. The method, however, yields best results when a large number of data on the kink-band angles are plotted and contoured on the triangular graph. $1 * 1998$ Elsevier Science Ltd. All rights reserved


## INTRODUCTION

Kink-bands assume geometrical characteristics according to their mode of growth (Twiss and Moores, 1992; Table 1). Of special significance here are the three angular parameters (kink-band angles) that constrain the geometry of a kink-band (Fig. 1). These are the angles between: (i) external foliation and kink plane $(\phi)$, (ii) internal foliation and kink plane ( $\phi_{\mathbf{k}}$ ) and (iii) internal foliation and external foliation $(\psi)$. The relationship between $\phi$ and $\phi_{\mathrm{k}}$ angles has often been used as a criterion for deciphering the mode of kinkband growth (Ramsay, 1967; Anderson, 1968; Hobson, 1973; Gay and Weiss, 1974; Verbeek, 1978; Stewart and Alvarez, 1991).

Kink-bands are commonly used as paleostress indicators in rocks and their dynamic significance has been tested in several well constrained experimental studies (Paterson and Weiss, 1966; Donath, 1968; Anderson, 1974: Gay and Weiss, 1974). One common method of paleostress analysis from kink-bands involves bisecting the dihedral angles between the conjugate pairs of kink planes (Ramsay and Huber, 1987). The other
method involves application of the experimentally determined relationships between each of the kinkband angles ( $\psi, \phi_{\mathrm{k}}$ and $\psi$ ) and the inclination of the maximum compressive stress ( $\sigma_{1}$-axis) with respect to the unrotated layering (Gay and Weiss, 1974). In this paper, we propose a new triangular plot as an improvement in the application of the second method and discuss its suitability in the paleostress analysis from contractional kink-bands (Ramsay and Huber. 1987).

## TRIANGULAR PLOT

## Geometry

By definition, the three kink-band angles $\left(\phi, \phi_{\mathrm{k}}\right.$ and $\psi$ ) are related by an equation

$$
\phi+\phi_{\mathrm{k}}+\psi=180^{\circ}
$$

that implies the possibility of their representation on an equilateral triangle (Fig. 2). The angles $\phi, \phi_{\mathrm{k}}$


Fig. 1. Definition of the angular parameters in a kink-band (ater Gay and Weiss. 1974).
and $\psi$ are equal to $180^{\circ}$ at the vertices of this triangle and they decrease progressively down to 0 along the normals dropped from the vertices onto the opposite sides (Fig. 2). Along the three sides of the triangle, namely, $\phi_{k(180)}-\psi_{180}$. $\phi_{180}-\psi_{180}$ and $\phi_{180}-\phi_{\mathrm{k}(180)}$, the angles $\phi . \phi_{\mathrm{k}}$ and $\psi$ are equal to zero, respectively. This triangle comprises four equilateral sub-triangles. $\left(\phi_{0}, \phi_{\mathrm{k}(180)}, \psi_{0}\right),\left(\phi_{0}, \phi_{\mathrm{k}(0)}, \psi_{0}\right)$, $\left(\phi_{180}, \phi_{k(0)}, \psi_{0}\right)$ and $\left(\phi_{0}, \phi_{k(0)}, \psi_{180}\right)$. Of these, the sub-triangle $\left(\phi_{0}, \phi_{\mathrm{k}(0)}, \psi_{0}\right)$ is named as the kinkband triangle on account of the fact that the natural kink-bands usually plot within this sub-triangle (shaded in Fig. 2).

Most contractional kink-bands nucleate at a point on the line $\phi_{180}-\phi_{\mathrm{k}(180)}$ and evolve according to the geometrical constraints that characterise their respective mode of growth (Table 1). Four different modes of kink-band growth can be represented by schematic but distinct deformation paths on the triangular plot (Fig. 2). Many natural kink-bands, however, may grow by a combination of two or more modes (Verbeek, 1978; Weiss, 1980).

A linear segment and a point maximum on the altitude (normal dropped from the vertex $\psi_{0}$ onto the $\phi_{0}-\phi_{k(0)}$ side) of the kink-band triangle are the characteristic deformation paths for the type-I and type-II kink-bands, respectively (Table $1 \&$ Fig. 2). One of the several possible deformation paths for the type-III and type-IV kink-bands is a line parallel to the $\phi_{k(0)}-\psi_{0}$ side of the kink-band triangle. As the type-lll kinkbands can continue to form in the field $\phi_{\mathrm{k}}<\phi$, their deformation path may extend across the line $\phi=\phi_{\mathrm{k}}$. The evolution of the type-IV kink-bands ceases once the deformation path touches the line $\phi=\phi_{\mathrm{k}}$ and the condition of locking is achieved with respect to the rotation of the internal foliation (Table $1 \&$ Fig. 2).


Fig. 2. The triangular graph ( $\phi_{\mathrm{k} \mid 1801}, \phi_{180}, \psi_{180}$ ) for ploting the kink-band angles. Plots for most natural kink-bands fall within the kink-band triangle $\phi_{1,}$. $\phi_{k(0)}, \psi_{0}$ (shaded). I I', II II', III-II' and IV IV' represent the schematic deformation paths for the four modes of kink-band growth, respectively (characteristics of different modes of growth are outlined in Table 1; volume changes shown on line IV-IV' are the changes in total or bulk volume).

Table 1. Summary of the changes in geometrical characteristics in the four types of kink-bands during their progressive evolution by the four idealized modes of growth (after Twiss and Moores, 1992). The angles $\phi, \phi_{\mathrm{k}}$ and $\psi$ are defined in Fig. 1

| Geometrical characteristics | Type-I (Mode-I) | Type-II (Mode-II) | Type-III (Mode-III) | Type-IV (Mode-IV) |
| :---: | :---: | :---: | :---: | :---: |
| Variation in $\phi$ and $\phi_{\mathrm{k}}$ during the growth of kink-band | Both $\phi$ and $\phi_{\mathrm{k}}$ decrease progressively in such a manner that the condition $\phi=\phi_{\mathrm{k}}$, is always satisfied. | The condition $\phi=\phi_{\mathrm{k}}=$ constant, is satisfied throughout the growth of kink-band. | $\phi \neq \phi_{\mathrm{k}} . \phi$ remains constant but $\phi_{\mathrm{k}}$ decreases progressively. | $\phi$ remains constant but $\phi_{k}$ decreases progressively until the condition $\phi=\phi_{\mathrm{k}}$, is achieved. |
| \% | Increases progressively. | Remains constant. | Increases progressively. | ly. |
| Two kink-band boundaries | Migrate by rotating about fixed hinges. The amount of rotation for the two kink-band boundaries is equal but their sense of rotation is opposite to each other. | Migrate away from each other by moving parallel to themselves. | Remain fixed during the growth. | Remain fixed during the growth. |
| Bulk or total volume | Remains constant. | Remains constant. | Remains constant. | First increases and then decreases. |
| Width of kink-band | Increases. | Increases. | Remains constant. | Variable. |
| Length of internal foliation | Remains constant during the growth. | Remains constant during the growth. | Variable | Remains constant during the growth. |

## PALEOSTRESS

Experimental deformation of card decks and slate (Gay and Weiss, 1974) shows a systematic variation in geometry of the kink-bands with progressive increase in the angle $\alpha$ (between maximum compressive stress and the original anisotropy) from $0^{\circ}$ to $30^{\circ}$. These experiments reveal three important linear relationships between each of the kink-band angles ( $\phi, \phi_{\mathrm{k}}$ and $\psi$ ) and the angle $\alpha$ (defined in Fig. 1). As the angles, $\phi$, $\phi_{\mathrm{k}}$ and $\psi$, are readily measurable in natural kinkbands, the three experimentally obtained linear plots ( $\phi-\alpha, \phi_{\mathrm{k}}-\alpha$ and $\psi-x$; fig. 6 in Gay and Weiss, 1974)
provide three alternative ways for estimating the angle $\alpha$ and hence the orientation of the maximum compressive stress ( $\sigma_{1}$-axis).

The three best-fit lines through the experimental data in $\phi-\alpha, \phi_{\mathrm{k}}-\alpha$ and $\psi-\alpha$ plots of Gay and Weiss (1974) can be transformed into a straight line (referred below as the "paleostress line") inside the kink-band triangle (Fig. 3). Co-ordinates ( $\phi, \phi_{\mathrm{k}}$ and $\psi$ ), required to plot the different values of $\alpha$ on the kink-band triangle, are determined from the experimentally established relationships between $\phi$ and $\alpha$, and $\phi_{\mathrm{k}}$ and $\alpha$, and $\psi$ and $\alpha$ (Gay and Weiss, 1974). A paleostress line is then constructed by joining the points that represent


Fig. 3. The part $\phi_{40}, \phi_{\mathrm{k}(40),} \psi_{0}$ of the kink-band triangle (shaded in Fig. 2) that contains the plots of the individual kinkbands (1-23). Angular data for plotting these kink-bands are taken directly from the table 1 in Gay and Weiss (1974). The paleostress line (barbed) is calibrated for the angle $x$ (from $0^{\circ}$ to $30^{\circ}$ ) on the basis of the experimental results in Gay and Weiss (1974).
different $\alpha$ values on the triangular plot. The uncertainty in constructing the paleostress line from the three best fit lines through the experimental data is less than 1 .

For the kink-bands that plot on the paleostress line (plots 4 and 11 in Fig. 3), all the three kink-band angles $\left(\phi, \phi_{\mathrm{k}}\right.$ and $\left.\psi\right)$ yield the same value of $\alpha$. For those kink-bands that plot off the paleostress line. three possible values of $\alpha$ are given by the intersections of the paleostress line with the projections of the plot parallel to the three sides of the kink-band triangle (Table 2). It is noteworthy that the projections parallel to the $\phi-, \phi_{k}$ - and $\psi$-lines give, respectively. the same $\alpha$ as those obtained independently from the $\phi-\alpha, \phi_{\mathrm{k}}-\alpha$ and $\psi-\alpha$ graphs in Gay and Weiss (1974). The triangular graph, therefore, obviates the need for using three scparate lincar graphs. Furthermore, on account of the equilateral geometry of the kink-band triangle, the angle $\alpha$ obtained from the projection of the kink-band plot parallel to the $\psi$-line (equivalent to $\alpha$ from $\psi \alpha$ graph) is, in fact. the arithmetic mean of the $\alpha$ angles obtained from the projections parallel to the $\phi$ - and $\phi_{k}$-lines (equivalent to the $\alpha$ from $\phi-\gamma$ and $\phi_{\mathrm{k}} \cdots \alpha$ graphs, respectively).

## APPLICATION OF THE TRIANGULAR PLOT

The three angles $\left(\phi, \phi_{\mathrm{k}}\right.$ and $\left.\psi\right)$ required for the application of the triangular graph to natural kink-bands can be determined stereographically from the orien-
tations of external foliation, kink plane and internal foliation. Direct measurements of $\phi, \phi_{\mathrm{k}}$ and $\psi$ angles on joint planes or photographs are likely to introduce errors as these planes are often oblique to the profile sections of the kink-bands (Stewart and Alvarez, 1991). We demonstrate the application of the triangular graph with the help of published data on 23 individual kink-bands as well as data from several hundred kink-bands in three case studies.

## Individual kink-hands

Triangular plots for the 23 examples cited in Gay and Weiss (1974, table I) show that the plots for most natural kink-bands fall within a small region on the triangular graph (Figs 2 \& 3). For those kink-bands that plot at or close to the paleostress line (e.g. 4, 5, 11 and 23 in Fig. 3) the $x$ values can be read directly. For those kink-bands that plot off the paleostress line. $\phi$. $\phi_{\mathrm{k}}$ and $\psi$ angles yield mutually inconsistent $\chi$ values. Two alternative explanations are possible for such kink-bands: (i) They do not grow in accordance with the experimentally simulated two-dimensional model that requires a parallelism between kink axis and $\sigma_{2^{-}}$ axis. The kink-band triangle cannot be used for estimation of $\alpha$ from such kink-bands. (ii) Alternatively, even if the kink-bands nucleate by a mechanism simulated in the two-dimensional model, one of the angles ( $\phi$ or $\phi_{\mathrm{k}}$ ) may change due to a relatively late deformation outside or within the kink-bands. For example, simple shear along the kink planes can modify the original $\phi_{\mathrm{k}}$ angle without altering the $\phi$ angle. In thesc

Table 2. Results from triangular plots of the individual kink-bands. Bold numbers indicate the optimum value of the angle $\alpha$ (between the $\sigma_{1}$-axis and the untotated layering). The examples and kink-band angles ( $D$ and $\psi$ ) are adopted from table 1 in (Gay and Weiss (1974)

| SI. | Source | Kink-band angles |  |  | $x$ from intersection of paleostress line with the projections of the plot parallel to different sides of the sub-triangle (Fig. 2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 中 | $\Phi_{\mathrm{k}}$ | \% | $\Phi_{\mathrm{K}(1)} \psi_{0}$ side | (t) $\psi_{0}$ side | $\Phi_{\text {kiol }} \phi_{0}$ sidc |
| 1 | Weiss. 1972 plate 115 a | 71 | 76 | 33 | 19 | 07 | 13 |
| 2 | Weiss. 1972 plate 115 a | 61 | 80 | 39 | 02 | 15 | 8.5 |
| 3 | Weiss. 1972 plate 1156 | 68 | 70 | 42 | 14 | ' | 06 |
| 4 | Weiss. 1972 plate 115b | 68 | 80 | 32 | 14 | 14 | 14 |
| 5 | Weiss, 1972 plate 116 | 70 | 80 | 30 | 18 | 14 | 16 |
| 6 | Weiss, 1972 plate 117 a | 65 | 80 | 35 | 09 | 14 | 11.5 |
| 7 | Weiss. 1972 plate 117 a | 57 | 92 | 31 | ? | $\times 30$ | 15 (\%) |
| 8 | Weiss, 1972 plate 117 a | 62 | 91 | 27 | 3.5 | $>30$ | 18 |
| 9 | Weiss. 1972 plate 117 h | 67 | 91 | 22 | 12 | $>30$ | 22 |
| 10 | Weiss. 1972 plate 117 b | 73 | 72 | 35 | 22 | 02 | 11.5 |
| 11 | Weiss. 1972 plate 118 | 74 | 86 | 20 | 24.5 | 24.5 | 24.5 |
| 12 | Weiss. 1972 plate 118 | 71 | 88 | 21 | 19 | 27 | 23 |
| 13 | Weiss. 1972 plate 121 | 79 | 7.3 | 28 | $>30$ | 03 | 17.5 |
| 14 | Weiss. 1972 plate 121 | 75 | 77 | 28 | 26 | 09 | 17.5 |
| 15 | Weiss. 1972 plate 121 | 71 | 61 | 48 | 19 | $\because$ | 01 |
| 16 | Weiss. 1972 plate 121 | 61 | 93 | 26 | 02 | $>30$ | 19 |
| 17 | Fyson. 1968 Fig. 1(a) | 73 | 77 | 30 | 23 | 09 | 16 |
| 18 | Fyson. 1968 Fig. 1(b) | 89 | 70 | 21 | $>30$ | ! | 23 (\%) |
| 19 | Fysom, 1968 Fig. 1(d) | 68 | 92 | 20 | 14 | $>30$ | 24.5 |
| 20) | Fyson, 1968 Fig. I(e) | 72 | 70 | 38 | 22 | $\because$ | 09 |
| 21 | Anderson, 1968 plate IA | 67 | 82 | 31 | 12 | 18 | 15 |
| 22 | Anderson, 1908 Dextral | 54 | 79 | 47 | $\because$ | 12 | 02 |
| 23 | Anderson. 1968 Sinistral | 63 | 77 | 40 | 05 | 09 | 07 |

type of kink-bands, this is the angle that remains relatively unchanged since growth is a more reliable indicator of $\alpha$. For the sake of demonstration of the method, we assume that most of the kink-bands that plot off the paleostress line in Fig. 3 have grown according to the two-dimensional model but postgrowth modification in the kink-band geometry has resulted in modification of either $\phi$ or $\phi_{k}$.

Some typical examples of natural kink-bands that plot to the left of the paleostress line (and close to the $\phi_{\left.\mathrm{k}(9))^{-s i d e}\right)}$ are labelled as 8,9, 16 and 19 in Fig. 3. The projections of these plots parallel to the $\phi_{\mathrm{k}}$-lines (or $\phi_{0}-\psi_{0}$ side) would intersect the paleostress line at $\alpha$ greater than $30^{\circ}$. Such high values of $\alpha$ are improbable as "sliding" rather than 'kinking" is more likely to occur at $\alpha$ greater than 30 (Gay and Weiss. 1974). As some of these kink-bands (e.g. plot 16 in Fig. 3 corresponding to kink-bands in plate 121 in Weiss, 1972) exhibit a conjugate geometry that implies low values of $\alpha$, it is evident that the $\alpha$ values (18-24) obtained by projecting these plots parallel to $\psi$-lines (or $\phi_{0}-\phi_{\mathrm{k}(0)}$ side) are also overestimates. The most realistic $\alpha$ values $\left(\leq 15^{\circ}\right)$, in these cases, are obtained by the intersections of the paleostress line with the projection of the kink-band plots parallel to the $\phi$-lines (or $\phi_{\mathrm{k}(0)}-\psi_{0}$ side) in the kink-band triangle.

It is possible that the data falling to the left of the paleostress line represent kink-bands in which the external foliation has maintained its orientation, whereas the internal foliation has undergone a significant rotation since the beginning of the kink-growth process. As a consequence, the angle $\phi$ indicates the most reasonable inclination of the $\sigma_{1}$-axis and the other two angles ( $\phi_{\mathrm{k}}$ and $\psi$ ) overestimate $\alpha$.

For most of those kink-bands that plot to the right of the paleostress line, the angle $\phi_{\mathrm{k}}$ (projections of the plots parallel to the $\phi_{k}$-lines) provides the optimum value of $\alpha$ and both $\phi$ and $\psi$ tend to overestimate this angle (e.g. plots $1,10,13,14$ and 17 in Fig. 3). External foliation in these kink-bands probably changes its orientation by processes such as overrotation (Verbeek, 1978; Rousell, 1980) and consequently the angle $\phi$ loses its significance as a paleostress indicator.

The angle $\alpha$ is difficult to estimate for those kinkbands that plot to the left of the paleostress line in such a manner that their projections parallel to the $\phi$ lines do not intersect the paleostress line (plot 22 in Fig. 3). A similar limitation exists for the plots falling to the right of the paleostress line if their projections parallel to the $\phi_{\mathrm{k}}$-lines do not intersect the paleostress line (plots 3 and 15 in Fig. 3). In such cases, $\alpha$ can, at best, be approximated by projections of the plots parallel to the $\psi$-lines, though these results are likely to be overestimates.

No reliable estimates of $\alpha$ can be made by this method for those kink-bands that plot in such a position that neither their projections parallel to $\phi$-lines
nor parallel to $\phi_{\mathrm{k}}$-lines intersect the paleostress line between $\alpha=0^{\circ}$ and $30^{\circ}$ (plots 7 and 18 in Fig. 3). Growth by mechanisms other than those simulated experimentally by Gay and Weiss (1974) and/or postgrowth modifications in the geometry could be possible explanations for the inapplicability of the method in such cases.

## Examples

The application of the triangular plot in studies involving a large population of dynamically compatible kink-bands requires the plotting of representative kink-band angles. Such representative angles are suggested either by 'modal statistics' in the histograms or by the contour maxima on the triangular plots. A distinct merit of contouring the plots on the triangular graph (Fig. 2) is the fact that all three angles are considered simultaneously, whereas in a histogram only one angle is considered at a time. Thus, a situation may exist where the sum of the modal values of the three angles given by three separate histograms may not be equal to 180 and the fundamental equation $\left(\phi+\phi_{\mathrm{k}}+\psi=180^{\circ}\right)$ constraining the geometry of a kink-band is not satisfied (Hobson, 1973). Triangular plots of kink-bands always satisfy this condition.

The case studies presented here include the new data from conjugate kink-bands in the Precambrian carbonate sequence in the Satur area, western India (Fig. 4a), published data on conjugate kink-bands in the slates and siltstones of the Ards Peninsula, N. Ireland (Anderson, 1968) and published data on monoclinal kink-bands in the Somport slate in the Pyrenees (Verbeek, 1978). The two sets belonging to the conjugate pairs of kink-bands in the Satur area and the Ards Peninsula are plotted separately (Fig. 5a-d). The monoclinal kink-bands in the Somport slates are plotted without any subdivision (Fig. 5e).

Numerous contractional mesoscopic kink-bands are developed synchronously with a macroscopic kink-fold in the vicinity of the Great Boundary Fault (Iqbaluddin et al., 1978) in the Satur area (Fig. 4a). These kink-bands occur in two conjugate sets suggesting, respectively, 'top-to-the-NNW' and 'top-to-the-SSE' sense of the relative movements. The kink axes of the two sets are mostly parallel to sub-parallel and they plunge at low angles ( $<20^{\circ}$ ) towards ENE or WSW (Fig. 4b). On the triangular plots, the $25 \%$ contour maximum for each of the sets falls on the paleostress line at $\alpha$ equal to $0^{\circ}$ (Fig. $5 \mathrm{a} \& \mathrm{~b}$ ).

In cases of layer-parallel compression ( $\alpha=0$ ), such as the one in the Satur area, the angle between the external foliation and kink plane becomes equal to the angle between the $\sigma_{1}$-axis and the kink plane ( $\phi=\theta$ ). The modal values of the angle $\phi\left(=60^{\circ}\right)$ for both sets of kink planes, in the Satur area. imply that the $\sigma_{1}$-axis is sub-horizontal and directed towards SSE (Fig. 6). The $\sigma_{1}$-axis determined independently by


Fig. 4. (a) Geology of the Satur area (indicated by arow). Inset shows the Great Boundary Fault (GBF) in India, (after Jqbaluddin et al. 1978). (b) Orientation of the conjugate pairs of the kink planes and kink axes in the Satur area. Circles and stars represent 42 axes of the 'top to the-NNW' and 110 axes of the 'top-to-the-SSE' kink-bands, respectively. Contours at every $5 \sigma$ ( $\sigma=1.2$ and 1.4 for the 'top-to-the-NNW' and ' 10 p-to-the-SSE' kink-bands, respectively).
bisecting the obtuse angle between the two conjugate sets of kink planes is consistent with the results obtained from the triangular plots (Fig. 6).

The triangular plots of the sinistral kink-bands from the Ards Peninsula show that the $20 \%$ contour maximum falls on the paleostress line at $\alpha=0$.
(Fig. 5c). Although the $25 \%$ contour maximum for the dextral set lies to the left of the paleostress line, its projection parallel to the $\phi$-lines intersects the paleostress line at $x=3$ (Fig. 5d). That these two sets were developed as conjugate pairs under the conditions of layer-parallel compression is corroborated by the


Fig. 6. Comparison of the results from the two methods. Triangle and the circle (black) represent the $\sigma_{1}$-axes obtained from the triangular plots and the bisection of the dihedral angle, respectively. (Continuous great circles-modal kink planes, dashed great circleprofile section.)
mutually consistent and low values of $\alpha\left(\leq 3^{\circ}\right)$. As the modal values of $\phi$ angles in both dextral and sinistral sets are equal to $60^{\circ}$, the angle $\theta(=\phi-\alpha$, Fig. 1) between kink plane and the $\sigma_{1}$-axis is $57-60^{\circ}$ for these kink-bands. By an entirely different method, Anderson (1964) found a value of $\theta$ ranging between $55-60^{\circ}$ for these kink-bands and his results are consistent with those obtained here from the triangular plots.

The final case study includes co-zonal, monoclinal kink-bands of lenticular geometry in the Somport slates (Fig. 5e). As the $30 \%$ contour maximum for these kink-bands lies to the right of the paleostress line, its projection parallel to the $\phi_{\mathrm{k}}$-lines is considered for the determination of the angle $\alpha$. An $\alpha$ value of $10^{\circ}$ revealed by this method compares closely with the results ( $\alpha=11-15^{\circ}$ ) obtained by Verbeek (1978) from the independent stress solutions.


Fig. 5. Contoured triangular plots for the three case studies. All contours are $\%$ per $1 \%$ area of the triangular graph ( $\phi_{\mathrm{k}(180),}, \phi_{180}, \psi_{180}$ ) shown in Fig. 2. Most kink-bands plot within the kink-band triangle ( $\phi_{0}, \phi_{\mathrm{k}(0)}, \psi_{0}$; shaded in Fig. 2).

## CONCLUSIONS

Most natural kink-band plots fall within the kinkband triangle on account of the fact that only a limited number of growth-modes can lead to the evolution of these structures (Figs $2 \& 3$ ). For the kink-bands that plot away from the paleostress line, one of the two angles ( $\phi$ or $\phi_{\mathrm{k}}$ ) could be a better estimator of the orientation of the maximum compressive stress, provided that these kink-bands have essentially grown by the simple two-dimensional model simulated in the experiments of Gay and Weiss (1974) and at least one of the angles ( $\phi$ or $\phi_{k}$ ) has remained unchanged since growth of the kink-bands. The third angle ( $\psi$ ) has little independent dynamic significance as it yields an $\alpha$ value which is the arithmetic mean of the two $\%$ values suggested by $\phi$ and $\phi_{\mathrm{k}}$.

The use of the kink-band triangle is advocated for the determination of maximum compressive stress orientation from suitable kink-band structures. In practice. it is better to measure a large number of kink-bands and obtain the modal angles by the contour maximum on the triangular graph. The triangular plot suggested here is suited ideally if the kink axis is parallel to $\sigma_{2}$-axis, $\phi_{\mathrm{h}}>\phi$ and the kink-bands show litthe or no concentration of the finite strain (Gay and Weiss, 1974). As these conditions are satisfied in many natural kink-bands (Anderson, 1964), the triangular plot may find a wide application.

Ackmonledgements We thank. Avanish Kant for his help during field work; Julian Robinson, Chris Shorrock and A. K. Awasthi for fruitful discussions; and R. J. Norris, R. IF. Berry and an anonymous releree for constructive comments and suggestions. M. I. thanks the Director General. National Council for Cement and Building Materials for permission to participate in this study. DCS thanks The Royal Society of London and The Indian National Science Academy for funding his visit to the Laboratory of Strain Analysis. University of Wales, Cardiff.

## REFERENCES

Anderson, T. B. (1964) Kink-bands and related geological structures. Nathe 202, 272274.
Anderson, T. B. (1968) The geometry of a natural orthorhombic system of kink-bands. In Researches in Tecronics, eds A. J. Baer and D. K. Norris, pp. 200 219. Geological Survey of Canada paper 68-52.
Anderson, T. B. (1974) The relationship between kink-bands and shear fractures in the experimental deformation of slate. Journal of the Goological Society of Lombon 130, 367. 382.
Donath. F. A. (1968) Experimental study of kink-bands in Martinsburg slate. In Researches in Tertomies eds A. I. Bater and D. K. Norris. pp. 255288 . Geological Survey of Canada paper 68-52.
Fyson. W. K. (1968) Profile variation in a kink set. In Resedrehes in Tectonics, eds A. J. Baer and D. K. Norris. pp. 243254. Geological Survey of Canada paper 68-52.
Gay. N. C. and Weiss. L. E. (1974) The relationship between principal stress directions and the geometry of kinks in foliated rocks. Tectomophesics 21, 287. 300.
Hobson, D. M. (1973) The origin of kink bands near Tintagel, North Cornwall. Geological Magazine 110, 133144.
Iqbaluddin. Prasad. B., Sharma, S. S., Mathur, R. K., Gupta, S. N. and Sahai, T. N. (1978) Genesis of Great Boundary Fault of Rajasthan, India. Procesdings of the Third Resional Comferenter on Geology and Mineral Rexoutrees of South-East Asa. Bangkok. pp. 145149.

Paterson. M. S. and Weiss. L. E. (1960) Experimental deformation and folding in phyllite. Goological Socien! of Ancricat Bulletin 77 , 343374.

Ramsay, J. G. (1967) Folding and Fractming of Rocks. McGiaw-Hill. New York
Ramsay, J. (G. and Huber. M. I. (1987) The Techmiques of Modern Strachural Goolog., Fohume 2: Iolds and Fractures. Academic Press, London.
Rousell. D. H. (I980) Kink-bands in the Onaping Formation. Sudbury basin. Ontario. Tectonophysics 66, 8.397.
Stewart, K. G. and Alvares, W. (1991) Mobile-hinge kinking in layered rocks and models. Jomral of Strucharal Goology 13, 243 259
Twiss, R. J. and Moores. E. M. (1992) Simtrtural (icology. W. II Freeman and Company. New York.
Verbeek, F. R. (1978) Kink-bands in the Somport slates, west-central Pyrenees. France and Spain. Cieological Socicol of America Bulletin 89,814824 .
Weiss. L. E. (1972) The Minor Structures of Deformed Rockw. A Photographic Athas. Springer Verlag. Berlin.
Weiss. L. E. (1980) The nucleation and growth of kink-bands. Tectonophysic: 65, 1 .38.

